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ABSTRACT / y ;1)?

The reasons why nuclear electron-capture rates in stars
depend on temperature and density are discussed, and some astro-
physical applications of continuum electron-capture rates are
reviewed. The modern theory of nuclear beta-decay is then used
to calculate stellar continuum electron-capture rates for tran-
sitions of an arbitrary degree of forbiddenness. The equations
that are most useful for astrophysical applications are discussed
in detail; particuler emphasis is placed upon methodé for pre-
dicting stellar rates that utilize, whenever possible, terrestrial
measurements. Three examples are discussed that illustrate the
use of the formulae given in this paper; the examples are:

(a) the electron-capture lifetime of a proton, (b) the stellar
)y

beta-decay of K O’ and (c) the effect of forbidden transitions

on the abundances of elements in the iron peak. A JTHIZ

I. INTRODUCTION

‘Section a) of this introduction is devoted to answering two questions:
(1) why do electron-capture lifetimes of nuclei in a star depend sensitively
on the local temperature and density, and (2) what are some of the astro-
physical aspplications of stellar electron-capture lifetimes? Section b) of
the introduction is a summary of the results presented in the remainder of
this paper.

a) Motivation

Atoms in stellar interiors are highly ionized and hence cannot capture

bound electrons as easily as they can on earth. This high degree of




ionization is largely a consequence of the enormous temperatures that exist
in stellar interiors. For example, temperatures in the range 10+8 to lO+9 %k
are thought to obtain in the interiors of red giant stars (Burbidge, Burbidge,
Fowler, and Hoyle 1957; Cameron 1958); this temperature range corresponds to
an average thermal energy of 13-130 kev. Since the ionization energy of a
1s electron in Californium (Z = 98) is about 133 kev, it is obvious that most
nuclei in the interior of a red glant possess few, if any, bound electrons.
Moreover, the thermal energy in the interior of a main sequence star is of
the order of 1 kev, so that light nuclei, such as He3 or Be7, are completely
stripped of electrons in the interiors of main sequence stars. The above
qualitative arguments are supported by the quantitative analysis of Cox and
Eilers (1962), who calculated, from statistical mechanical considerations,
the average degree of ionization of a number of heavy elements under some
typical stellar-interior conditions.

Nuclei that decay on earth by the capture of bound atomic electrons may
decay in stellar interiors by the capture of free electrons from the surround-

ing hot plasma. The terrestrial capture of a bound electron is described

symbolically by the following equation:
e + (z,A) + (2-21,A) +v , (1)

where Z and A are the nuclear charge and atomic number, respectively, of

the initial nucleus. The corresponding stellar reaction is written symbolic-

ally
e, + (2,A) » (2-1,4) +v ) (2)

where e is any continuum electron in the plasma surrounding (z,A). Under




most stellar-interior conditions, reaction (2) is faster than reaction (1)
(Schatzman 1958; Bahcall 1962 a,b; Fowler and Hoyle 1963).

The rate of reaction (2) is proportional to the probability that a
continuum electron is present at the nucleus where it can be captured. The
probability of finding an electron at the nucleus is in turn proportional
to the electron density and inversely proportional to the average electron
velocity, which for nondegenerate electrons depends on the square root of
the temperature. Thus the rate of reaction (2) depends strongly on the local
electron temperature and density.

If a nucleus decays terrestrially by positron emission,
(2,8) + (2-1,4) +et +v , (3)

it will decay primarily by continuum electron capture in a star whose density
is sufficiently high. This change in the mode of decay occurs because
electron-capture probabilities are enhanced by high densities and most
positron emission rates are insensitive to densities of magnitude encountered
in sters (Bahcall 1962a).

If a nucleus (Z,A) is a stable beta-decay product on earth,

(Z-2,8) + (Z2,A) +e +v (%)
it can undergo induced electron capture at sufficiently high temperatures or
densities via reaction (2). The rates of such endoergic reactions, for
example,

e; +p * n+v ,
are extremely sensitive functions of temperature and density since they only

occur for continuum electrons having at least the threshold energy.




Terrestrial electron captures take place via reaction (1) and their
rates are therefore largely determined by fixed atomic parameters. Stellar
electron captures take place primarily via reaction (2) and hence depend on
the variable properties of the stellaf plasma.

Thus stellar-capture rates are highly vari&ble, although terrestrial-
capture rates are almost immutable. This difference in behavior is due
ultimately to the enormous range of temperatures and densities that occur in
stars.

From the time a star first begins to use nuclear reactions as an energy
source until its final stages of evolution, electron capture plays an import-
ant role in the nuclear transformations responsible for stellar energy
generation and the synthesis of heavy elements. Some applications.of
electron-capture calculations are reviewed below.

Schatzman (1958) has discussed the role of He3 electron capture and Be7
electron capture in the proton-proton chain. As an interesting side light,
we note that an accurate calculation of the Be7 decay rate in the sun (Bahcall
1962b) has recently been combined with other nuclear and astronomical data to
obtain a prediction of the solar neutrino flux (Bahcall, Fowler, Iben, and
Sears 1963, hereafter referred to as FIBS),

A knowledge of the beta-decay rates (including electron-capture rates)
of heavy nuclei under extreme conditions of temperature and density is necessary
for a detailed understanding of the formation of heavy elements by slow neutron
capture (Clayton, Fowler, Hull, and Zimmerman 1961; Cameron 19595). If the
beta-decay lifetime of an unstable isotope is long compared to its neutron-
capture lifetime, the isotope will usually capture a neutron instead of

transforming by some beta-decay process. Conversely, if the beta-decay




lifetime of an unstable isotope is short compared to its neutron-capture
lifetime, the nucleus will usually beta-decay before a neutron is captured.
Thus the path of successive neutron captures in the isotope chart, and
hence the heavy element abundances, are determined by beta-decay rates as
well as neutron capture cross sections.

Salpeter (1961) has recently emphasized that electron capture in low-mass,
low-temperature stars can significantly affect their chemical composition, and
hence their mean molecular weight. In order to compute the correct chemical
compositions for an evolutionary sequence of such low-mass stellar models,
it is necessary to have theoretical expressions for the relevant electron-
capture lifetimes.

Fowler and Hoyle (1963) have recently performed a massive reinvestigation
of the equilibrium process that is assumed to be responsible for the formation
of heavy elements in the iron peak. At the high temperatures thought to obtain
during the formation of the iron-peak isotopes, a great variety of nuclear
reactions occur. These prompt nuclear reactions quickly bring the nuclei into
a quasi-equilibrium state in which the most abundant nuclei have an approxi-
mately equal number of neutrons and protons and also have atomic numbers near
56. The conversion of protons into neutrons to form the iron-peak elements
that we observe, which almost always have more neutrons than protons, is then
accomplished by the slow process of continuum electron capture. The time for
the electron captures to occur is assumed limited by the various neutrino-loss
mechanisms (Chiu and Stabler 1961). Fowler and Hoyle have shown that the pre-
dicted isotopic abundances in the iron peak depend in a crucial way oh the
number of electron captures that can occur in the time allowed by the neutrino

processes, i.e., on the stellar electron-capture lifetimes.




The rate of stellar energy loss in the URCA process (CGamow and Schoenberg
1941; Chiu 1961) is determined by the electron-capture lifetimes of the nuclei
and White
involved. Colgateu(lses)hawe,proposed an interesting application of the URCA
mechanism. Other astrophysical applications of stellar electron-capture
lifetimes will no doubt be found as the interlocking studies of nuclear astro-

physics and stellar models become more accurate and more detailed.

b) Outline of this Paper

The modern theory of nuclear beta-decay (see, e.g., Konopinski 1959) is
applied in this paper to the calculation of continuum electron-capture rates
for transitions of arbitrary degrees of forbiddenness. This work is a general-
ization of the author's previous studies of allowed continuum electron capture
(Bahcall 1962 &,b); Schatzman (1958) has reviewed earlier work on allowed
captures. The author is not aware 6f any previous investigations of forbidden
stellar electron captures.

‘No derivations are given in this paper; the results that are presented
were obtained by techniques developed for analyzing terrestrial beta-decay
processes (Konopinski 1963 a,b). The equations that are most useful for
astrophysical applications are discussed in detail. The nuclear physics
uncertainties that are present in the prediction of the decay rates of
certain classes of forbidden transitions are also described. Particular
emphasis is placed upon using, whenever possible, terrestrial beta-decay
measurements to supplement the theoretical stellar formulae.

In Section II, "exact" theoretical expressions are presented that give
the rate of capture of a single continuum electron in a nuclear transition

of any degree of forbiddenness. We also present the "normal approximations"




to the "exact" expressions and examine the validity of these approximations
for stellar-interior problems. The work in this section is based upon the
analysis by Konopinski (1963 g,g) of closely related terrestrial beta-decay
processeé. In Section III, the results of Section II are generalized to
describe the capture of electrons from a Fermi-Dirac gas of arbitrary tempera-
ture and density. We also introduce generalized phase-space functions that
are convenient for predicting stellar rates when laboratory information
regarding reactions (1), (3), or (4) is available. Sections IV-VI are de-
voted to a detailed explanation of how the formulae developed in Sections II
and III can be used to predict stellar capture rates for stable isotopes and
for isotopes that decay terrestrially by positron emission or electron capture.
Some illustrative examples are treated in Section VII; they are: (a) the
electron-capture lifetime of a proton, (b) the stellar beta-decay of K&o,
and (c) the effect of forbidden transitions on equilibrium-process abundances.
The necessary information for predicting a specific decay rate can be
obtained by reading the appropriate one of Sections IV-VI and referring
occasionally to Sections II and III for definitions and remarks concerning
the accuracy of the approximations.

\

II. CAPTURE OF A SINGLE CONTINUUM ELECTRON

The work in this section is based upon Konopinski's (1963 E:E) general
treatment of positron emission and our notation is the same as his. In sub-
section (a), we present theoretical expressions, exact to second order in the
weak coupling constant, for the rate of capture of a single continuum electron;
these expressions apply to nuclear transitions of any degree of forbiddenness.

The normal approximations to the exact expressions are given is subsection (b);




the validity of these normal approximations for stellar-interior problems

is also discussed in subsection (b).

a) General Results

In order to calculate the rate of reaction (2), it is necessary to use
for the initial electron state a Coulomb distorted plane wave that has an
outgoing spherical wave. On the other hand, in calculations of terrestrial
positron and electron emission rates, equations (3) and (%), a Coulomb dis-
torted plane wave that has an incoming spherical wave is required for the
final state (Breit and Bethe 1954).

Nuclear beta-decay interactions are represented by the following

Hamiltonian density:
H, = Y25 Y (L+7) ¥ ||V 7 (C -C, 7.) v |+ Hee (5)
B L v 'a 5/ Te n’a'\"%%" % 7s ;) e

where all symbols have their usual meaning (Konopinski 1959; Bahcall 19623).
Expansion of we and *v in angular-momentum eigenstates leads, after an

integration over electron directions and an average over electron polariza-
tions, to the following equation for the transition probability for capture

of an electron in the momentum interval dsp:

(VGQP)Z 2
A = - g av £ln R
a ZK’“}K:“ Mf Mi (27t)5 dp |< I ﬁ(K’u} K)u)|i>| (6a)
where
hg = 270 [ &% (¥, o (C - ¢, 7)) W) (T, 7 (147.) ¥ o) (6b)
B - ~ n 7a v A'’S P K,H a 75 K, 1 y

and

Q= W +W (6c)
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Equations (6) are not changed if one requires that ¥, have an incoming
spherical wave instead of an outgoing spherical wave. The only physical fact
required to prove this result is that stellar-interior electrons are unpolarized.

In equations (6), *n,u is a Coulomb spherical wave for an electron and
*E,E is a pure spherical wave for a neutrino (Rose 1961). Also, p 1is the
magnitude of the electron's momentum and W is its totsl energy; q is the
magnitude of the neutrino's momentum and Wo is the difference between initial
and final nuclear masses. We have assumed one incident electron per volume V
and have set 8 = m, = ¢ = 1. The above choice of units is used throughout
this paper except where explicitly stated otherwise.

Two convenient methods can be used to calculate the transition probability
given by equation (6a): 1) direct expansion of hg in vector spherical har-

+

monics; 2) substitution, with appropriste modificationé, of hg

positron emission interaction treated by Konopinski (1963 g,g). Nuclear

for the

- matrix elements obtained by method 2) refer to transitions from final to

initial states and hence particular care must be taken in relating matrix
elements that occur in 2) to the more usual ones that refer to transitions
from initial to final states. In order to avoid mistakes in relative phase
among the nuclear matrix elements, we have carried out the calculation of
d\ Dby both methods.
We find:
2

an = So ao® & R(z,W) s(W,2) (7)

e

where S(W,Z) is the same shape factor that occurs in positron emission

calculations (Konopinski 1963 g,p) except for the substitutions

[gK('Z)]B+ M [gK(+Z)]electron capture (8a)
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and

. (8b)

[fK('Z)]B+ *o- [fK(+Z)]electron capture

The quantity F(Z,W) is the well-known Fermi function (Konopinski 1959;
Bahcall 19623). Note that equation (7) corresponds to a capture cross
section for unpolarized, randomly directed electrons given by:

2nv ’

Qi

where v 1s the electron's velocity.
The theoretical shape factor for continuum electron capture has the

following form:

S - (9a)

S(W,2) = Z;53 8533

where, in Konopinski's notation,

;.7 = (67147 o7 BI"1 [D"f L, 4+ D°H

I35 -2D D N 1] (9v)

-3 -3 -+ -3

In equations (9), J, 5, and J are, respectively, the angular momentum of the
captured electron, the angular momentum of the emitted neutrino, and the
total lépton angular momentum; R is an "average" nuclear radius; L, M = ﬁ/Rz,
and N = ﬁ/R are combinations of electron radial waves introduced by
Konopinski and Uhlenbeck (l9hl) in their original paper on forbidden beta
decay. The quantities D+ and D_ are combinations of neutrino radial

waves with beta-moments and are defined by Konopinski (19639); and 70

Py
are numerical functions that are also defined in Appendix A,

Expression (9b) differs from the corresponding positron shape factor only

in the sign of the D+ D_ N, tern.,

i-%




We shall only meke use of equations (7) and (9) in the normal approxi-
mation to be described in the next subsection. It is useful, however, to have
available the more general expressions since special cases (Konopinski 1963 g,p)

can require more exact treatment than is afforded by the normal approximation.

b) Normal Approximations

(1) Validity of the Normal Approximation

The normal approximation consists of retaining only the leading terms in
a power series expansion of S in terms of gqR and pR. In transitions for
vhich the terms independent of R give a nonvanishing capture rate, the normal
approximation is equivalent to the usual allowed approximetions that were used
to derive the capture rate for allowed decays (Bahcall 19622).

Two necessary criteria for the validity of the normal approximation for

continuum electron capture in stars are:

1

m ’ (10a)

and

R << == , (10p)

W

where W, is the difference between initial end final nuclear masses and <W)
is some maximum effective total energy of the captured electron. Equations (10)
follow from the requirement that qR and pR are small campared to unity.
Note that in astrophysical applications Wo can be either positive or
negative.

The criterion for ithe validity of the normal approximation in terrestrial
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electron and positron emission is equation (10a) with <W> replaced by -l1.
This criterion is easily fulfilled by every known case of terrestrial nuclear
beta decay (Konopinski 1963b). Hence equation (10b) by itself can be used to

test the validity of the normal approximstion in stars. Substituting

1.2 A;/S x 102 em for R in equation (10b), we find that equation (10b)
requires

T, << 105/aY/3 (11a)
for nondegenerate electrons and

pg << 300/A (11b)

for completely degenerate electrons. Here, TlO is the stellar temperature

in units of 1070 % and Pg 1is the stellar density in units of 10*° gn/em®.
Equations (11) are well satisfied for all stellar situations in which nuclear
physics studies have so far been made, but it is possible that equation (11v)

is not satisfied in some white dwarf stars.

The normal approximation may also fail in cases in which there is an
accidental cancellation smong the nuclear-beta moments that occur in the lowest
nonvanishing order of S. Such cancellations cannot be predicted theoretically
on the basis of our present knowledge of nuclear structure, but they can
frequently be detected By terrestrial measurements of shape factors and decay

rates. Konopinski (1963b) has discussed the classes of decays for which

failure of the normal approximation is most likely.

(11) Normal Shape Factors

If only the leading terms in L, ﬁ, and N are retained for the case of
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a field due to a point nucleus, equation (9b) becomes

2 D D Az
- o 28T 2 p2j-1 2 k-7 .2 - 4
®737 T Ter, P R L.y |25 +535 0 t2 a5 | (122)

where

k = J+% (12b)
and

1

y = & -dfP)z ., (12¢)

Making the approximation
- 2 ‘
k-7 = (a2z)/2x (13)

in equation (12a) and neglecting terms of order (& Z):5 or higher, we find

that
_ . .
. _lent 2 _2§-1 oz
5733 °F T+7, Pa R I‘k-l{D-'*ekDar] . (14)

Equation (14) has exactly the same form as the partial shape factor for
posltron emission.’

The leading terms for D+ and D_ are proportional to RE' % and
hence for AL - = |I'-I| > 1, where I is the initial nuclear spin and I'
is the final nuclear spin, a singlé value of J | dominates equation (9) in
the normal approximetion. This single dominant value of J is the minimm

one defined by

= AL . (15)
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For unigue transitions,

gxn! RO CA2 " _ 2(n-5)1
<O T By 34000 Iy 4 Jr, (16)

(n+1) -
Sy (Ar21) = (l+7o)(2n+l

wvhere n =AIl-1=J-1 1s the degree of forbiddenness and the product of
initial and final nuclear parities satisfies “i“f = (-l)n. The sumation
over j and J in equation (16) is restricted to Jj and § satisfying
equation (15). The quantity AJ(J,E) is defined by the following equation:

A;(3,3) = AL . (17)

(25 -23) 1! (5-2/2) ¢ (3-9-1/2) ¢

The vector spherical harmonics, T2+l, and the reduced nuclear matrix elements,
<o 'T§+l>’ are defined in Appendix A. The phases of nuclear states have been
chosen so that all nuclear matrix elements are real.

The notation for the shape-factor (16) is one already current in the
literature; the subscript refers to the degree of forbiddenness and the super-
script to the total angular momentum ejected. Unique decays, as their name
implies, take place via a single nuclear matrix element.

The allowed AI = l+ decays have a shape-factor that can be calculated

from equation (16); we obtain:

1 2 2
s(()) = b, <oeTH

, 2 (18)
C, o> .

it

The allowed AL = 07 sghape-factor cannot be calculated from equation (15)
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since for AI = O the following possibility also leads to a shape-factor

independent of R:
J-Jd = 0

(19)
= AL .

Hence equation (15) is not satisfied. When equation (19) is used in equation

(lh), the contribution to the allowed shape-factor is found to be:
(o) _ ~2 32
8q = € <D . (20)

The general shape-factor for allowed decays in the normal epproximation

is therefore:

L}

cv2 <1>2 +C A2 <c>2

§ L]

Sallowed
(21)

Equation (21) is in agreement with previous investigations of allowed con-
tinuum electron capture (Bahcall 1962a).

For AI > 1 parity forbidden transitions,

t 2( 'l)
Szz; (ar>1) gn(n-1)t R\

n

.+ A3, S 2(J-3)-1 2
(147 )(2n-1)11 25,3 45{359) Ljaa M=(J) (22)

wnere n = dJ

AI is the degree of forbiddenness and m m, = (-l)AI. Here
MJ(J) is the positron version of the parity-forbidden combination of nuclear
matrix elements obtained by Konopinski (1963 a,b) and defined in Appendix A.
The quantity MJ(J) is a linear combination of tnree independent nuclear
matrix elements and hence parity forbidden transitions are particularly

susceptible to cancellation anomslies.
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The first parity-forbidden transitions with AI = 1~ have a shape-factor

2
s§l) = [cv<g> - %? (c, e xx>-c, <if>)] (23)

that is independent of energy. The O' to O  shape-factor,

2

s{) (24)

n
>O
N
| R |
N\
~
[4)]
N
1}
Q
PN
\
Q
H>
AV

is also energy-independent. The general first parity-forbidden shape-factor
is:

s, = s§°) + s§l) . (25)

IIT. STELLAR CAPTURE RATES

a) Capture in a Fermi Gas

Equation (7) gives the capture rate of a single continuum electron with
a definite total energy W. In order to calculate stellar capture rates, we
mist multiply equation (7) by the probability that a stellar electron actually
has the energy W; this probability is essentially determined by the

Fermi-Dirac distribution function,

-1
FD = (14 e-v+w/kT)

. (26)

If the correct distribution function for a specific problem departs signifi-

cantly from the Fermi-Dirac function, then the formulae given below should be

-v+W/kT)'l

used with (1 + e replaced by the correct distribution function.
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The notation in equation (26) is the same as that used previously by
ter Haar (1956) and by the present author (Bahcall 1962 a,b). For nondegen-
erate electrons, convenient analytic and numerical expressions for v have
been given by several authors (Chandrasekhar 1957; Chiu 1961; Fowler and
Hoyle 1963). Note that our v is equal to (mecz/kT - @) in Chandrasekhar's
notation, p/kT in Chiu's notation, and mec2¢/kT in Fowler and Hoyle's
notation. For highly degenerate electrons, v is approximately equal to
the Fermi energy divided by kT (Bahcall 1962c).

Multiplying equation (7) by the Fermi-Dirac distribution function, we

obtain:

CEPEN
h s on° (h/mc)7 noe’ ’ (27e)

where the dimensionless average shape factor is defined by the equation

o 1
&> = f; ap 22 o@ F(z,W) 8(W,z) (1 + e VHW/ET) . (271)
o]

The threshold momentum, Po » is defined in terms of the difference between

initisl and final nuclear masses, Wo 3 the relation is:

0, if W_ > - m.ec2 (exoergic capture).
2 12 2 (27¢)
(WO -1)7c, if W, < -me (endoergic capture).

An extra factor of two occurs in equation (27a) because two electrons can be

in the same momentum eigenstate if their spin projections are different.
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b) Generalized Phase-Space Functions

For unique decays, it is convenient to introduce dimensionless general-

ized phase-spéce functions, K£n+l), that are defined by the following

2
. R Ca o * T2+l> K(n+1)
(2n+1)t n

equation:

<Sr(ln+l)> (28)

Here n is still the degree of forbiddenness and AI = n + 1. Equations (16),
(27), and (28) imply that

2(n!)(2n+1)t! o -1
Klgn'l'l) = (l+r; ) EJ,"J" AJ-(J,:D f ép p2 F(Z,W) LJ_% qz(n'd)'i'l (l+ e-V-I-W/kT)
o]

P
o]

b4

(29)

where J + j =n + 1. If terms of order (aZ)2 in LJ-% are neglected,

then K£n+l) has the following symmetrical form:
®
(n41) = (ann) 1 2 2 2j-1 23-1 —vaW/kTy "t
K, = (2n+1)! ZJ,E ?5377—Z5§37 dp p° ¢ F(2,W) p q (1+e ) .
-

© (30)

Equation (30) is sufficiently accurate for most astrophysical applications.
Recall that the quantity (f£t), which is used to characterize allowed

terrestrial beta decays, satisfies the relastion

3 7
(f T%) £ = gg__é_{l_?_ (;;%> oS (31a)
lab G

The Coulomb-corrected phase-space function, f, 1is defined by the equation

P

[ @ Erezw (31b)
(o]

T (xZ,W)

1]




- 20 -

where by convention the plus sign applies for electron emission and the minus
sign for positron emission. The maximum electron or positron momentum in a
terrestrial decay is here denoted by P . The value of (ft)lab is con-
ventionally used to classify terrestrial beta decays since it corrects the
half-life for the "accidental" effects of energy release and nuclear charge.

For allowed stellar captures,

[0 0]
-1
. [ e ® @rEw) eV (32a)
PO
= K, (32v)

where K is the integral over the available phase-space, with Coulomb and
statistical corrections, that was introduced in previous studies of allowed
stellar captures (Bahcall 1962 a,b). Note the similafity between the defini-
tion of £, equation (31b), and the definition of K, equation (32a).

The stellar phase-space function K satisfies, according to equations
(21), (27) anda (28), the relation:

3 g 7
2n In 2 gol 23
(K T%)Star E = (;2 (mc) m e” (33)

which is entirely analogous to the relation, equation (3la), satisfied by the
terrestrial phase-space function f. Thus K 1is a natural quantity to use

in characterizing allowed stellar captures. We shall also see, in the follow-
ing sections, that by focusing attention on the product (K T%)star one can
utilize lgboratory beta-decay measurements to make simple and accurate predic-

tions of allowed stellar capture rates.

First parity-forbidden transitions have shape-factors that, in the normal
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approximation, are energy independent combinations of nuclear matrix elements; 
the explicit definitions of the first parity-forbidden shape-factors were given
in equations (23)-(25). Because these shape-factors are energy independent,
there exist relations for first parity-forbidden transitions that are entirely
analogous to relations (31) and (33) for allowed decays. The relations for
first parity-forbidden decays are:

(£ 5 = 2x° tn 2/G° , (34)

lab

and

2

(K 73) - 2¢° tn 2/G° , (35)

star Sl

where Sl is the particular combination of nuclear matrix elements defined
by equation (25).
Thus X 1is also the appropriate quantity to use in characterizing first

parity-forbidden stellar captures.

IV, STELLAR CAPTURE RATES FOR TERRESTRIAL POSITRON EMITTERS

In this section, we show how stellar capture rates can be calculated
from the results of laboratory studies of terrestrial positron decays.
Since positron decay is assumed to occur on earth, continuum electron

capture is exoergic and PO is set equal to zero throughout this section.

a) Allowed and First Parity-Forbidden Transitions

It has been shown previously (Bahcall 1962 g,g) that continuum electron-

capture lifetimes for nuclel that decay terrestrially by allowed positron
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emission can be calculated from the following relation:

(ty) = (f1,) gt . (36)
2 star H lab

Here, (f T%)lab is the measured positron ft-value and K is the stellar

phase-space function defined by equation (32).

For allowed transitions, equation (36) follows immediately from equations
(31) and (33). Equation (36) is also valid, in the normal approximation, for
first parity-forbidden transitions; the proof of equation (36) for first
parity-forbidden transitions follows immediately from equations (34) and (35).

The simple physical fact expressed by equation (36) is that the rate of
an allowed (or first parity-forbidden) beta-decay transition, on earth or in
a star, is proportional to the total available phase-space.

Equation (36) is a powerful relation since it is independent of nuclear
matrix elements, nuclear radii, and beta-decay coupling constants; all these
quantities are ones that cannot be reliably predicted with our present know-
ledge of nuclear structure. Note that equation (36) can be used to estimate
stellar decay rates even 1f the corresponding terrestrial positron decay has
not been thoroughly investigated. This is because considerable experimental
information exists that correlates observed (£ Té)lab values with models of
nuclear stfucture (Feenberg 1955; Mayer and Jensen 1955; Konopinski 19632),
and thus it is often possible to guess fairly accurately a value of (f 1%)
to be inserted in equation (36). e

The fact that equation (36) can be used to estimate stellar decay rates
even when the corresponding laboratory decay rates have not been measured
is a particularly useful feature in studies of stars at very high temperatures.

This feature is useful because the beta decay of excited nuclear states, a
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process which cannot easily be studied in the laboratory, frequently dominates
the stellar-interior beta decay of nuclei at temperatures in excess of lO'*'8 %
(Cameron 1959b; Bahcall 1962¢; Fowler and Hoyle 1963).

Approximate analytic expressions for K were given by Bahcall (1962 a,b)
for both degenerate and nondegenerate electrons. Fowler and Hoyle (1963) have
since developed analytic approximstions for K +that are particularly con-
venient for the conditions thought to obtain in stars during the formation of

the iron-peak elements.

b) Unique Transitions

The transition probability for unique positron emission on earth is

(Konopinski 1963 a,b):

P
2 max
_ G 2 2 4(n) .
Map = 53 [ @Rz G -WE st (W, (3)
o]
where Sr(x-r:]). has, in the normal approximation, the same form, equation (16),
for positron emission as for continuum electron capture. Recall that unique

nﬂl -forbidden transitions have ALl =n + 1 = J with TN = (-1)".

One can agaein obtain an equation that is independent of nuclear radii ’
nuclear matrix elements, and other uncertain parameters by combining equa-
tions (16), (27) and (37), we find:

o (n41) (n+1)y "t
(T;)star = (£, T%)lab (X, , (38)

where, analogous to equation (29),
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f(n+1) _ 2(nt)(2n+1)s

P
max
<A (35,3 2 2(n-3) +1
n = T+7, 24,3 A;(3,3) f ép »° F(2,W) 1y 4 d (39a)
o}

P
1 max 2 2 25-1 23-1
(en#1)! =&, v —————— a F(Z,W . (39
n 53 e o) f p p° o° F(2,W) p q (39p)

Notice that for allowed decays fgl) reduces to the usual Coulomb-corrected
phase-space factor f.

Equetion (38) states that the rate of a unique transition, on earth or
in a star, is proportional to the generalized phase-space available,

The quantity f(n+l)

n can easily be computed if a laboratory measurement

of the maximum positron momentum, Pmax’ has been performed. The maximum

momentum Pma has, in fact, been measured for almost all known terrestrial

x
positron emitters. Thus equation (38), like equation (36), expresses the
stellar capture rate in terms of the most readily measured nuclear parameters.
Equation (38) can also be used to estimate stellar capture rates of
isotopes vwhose terrestrial decay has not been thoroughly investigated in the
laboratory, since there also exists a considerable amount of experimental
information that correlates (f£n+l) T%)l with models of nuclear structure

ab
(Feenberg 1955; Mayer and Jensen 1955; Konopinski 1963b).

c) General Parity-Forbidden Transitions

The transition probability for terrestrial parity-forbidden positron
emission is (Konopinski 1963 a,b):

P

max

G .2 _wy2 o(n) '

Meb = ;r—gf ap 52 F(-z,0) (W_-2 s (z,w) (40)
o
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(n)

where Sn

has, in the normal approximation, the same form for positron

emission as for continuum electron capture (see equation (22)). Recall

that nid parity-forbidden transitions have AI = n = J with TN = (-1)",
It is in general not possible to derive for parity-forbidden captures

an equation, similar to equation (38), from which stellar capture rates can

be calculated when only Pma

and (7,) are known. This is because the
( ) 2 ladb

g(n
n

X

shape factor, , for parity-forbidden transitions does not have a unique

energy dependence; the energy dependence of parity-forbidden transitions is
determined by a collection of nuclear matrix elements that are, in general,

unknown. The complicated combinations of nuclear matrix elements that de-

(n)

n
Mj(J) in equation (22) and are defined in Appendix A. We were able to obtain

termine the energy dependence of S were introduced as parameters called
a simple equation, equation (36), for first parity-forbidden continuum cap-
tures only because Sgo) and Sgl) are independent of energy in the normal
approximation.

One can, however, derive an equation for general parity-forbidden transi-
tions that can be used to calculate stellar capture rates if the terrestrial

s(n)
n

positron shape factor, , the maximum positron momentum Pmax’ and the

laboratory positron half-life, (Tl)lab ,
5

ally. We find, analogous to equations (38) and (39),

have all been determined experiment-

-1
() = e @) : (41a)
2 star 2 leb

where now

P

(n) _ 2(n!)(en+1)tt - T8 2 2(n-j)-1 ,, 2

5= T 23,3 haldd) J o e o ny S B

0

(41b)
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and
(n) _ 2(a!)(2n+1)!! > 2(n-3)-1 .. 2
n) : L P 2 n-3)-1
S L NRLR RACR) [ @ rew M,2(n)
P

0

X (14 WKy (b1c)

depend on the relevant nuclear matrix elements.

Equations (41) can be reliably used to predict stellar capture rates
only if the laboratory positron shape-factor, i.e., the unknown part of the
integrand of equation (th), has been measured over a range of momenta that
significantly overlaps the important range of momenta that occurs in equation
(41c). For most stellar situations, the two ranges of momenta do overlap
enough to make reliable predictions possible.

If the terrestrial positron spectrum has not been measured, one can still
make very rough estimates of the stellar capture rate by guessing a form for
Sgn)(Z,W) and then applying equations (41). This procedure is very inaccurate
for parity-forbidden transitions, since they are likely to exhibit anomalies

due to cancellations among nuclear matrix elements.

V. STELLAR CAPTURE RATES VERSUS TERRESTRIAL CAPTURE RATES

In this section, we discuss how one can predict the rate of stellar
continuum electron capture for an isotope that decays terrestrially by capture
of a bound atomic electron. The threshold momentum, Po’ is again zero.

The terrestrial captures of primary interest are ones involving K-shell
electrons since capture from higher shells usually accounts for a small fraction,
of the érder of 10 per cent, of the total decay rate. Moreover, the theoretical

corrections for captures from higher shells can now be made with considerable
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accuracy (Bahcall 19624, 1963). Hence we can regard measured total capture

rates as providing accurate values for K-capture rates.

a) Allowed and First Parity-Forbidden Transitions

(1) General Results

It is convenient to define a quantity, fe c.? by the following equation:

£, (ZW) = o

e.c Zn qn52 (w,) lwns(o)|2 ’ (42)

where the sum extends over all atomic principal quantum numbers, n. In
equation (42), wns(o) is the value of an ns-electron's wave function evalu-
ated at the nucleus and qns is the momentum of a neutrino emitted when an

ns-electron is captured by the nucleus. Note that

9 2 W o+ 1 - b(ns) s (43)

where b(ns) is the positive binding energy of an ns-electron in the initial
atom.
Using well-known results (Brysk and Rose 1960; Konopinski 1963 a,b) for

bound electron capture, one can easily show that for allowed decays:

1) E = 62 (22> n 2) . (L4)
€eCe 510y

(f

and for first parity-forbidden decays

-2 3
(fe.c. T%)lab s, = G (2n” tn 2) . (45)

Capture from other than s-orbits is neglected in equations (44) and (45).

Equations (44) and (45) have exactly the same form as equations (31) and
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(33) and hence the relation

(%) = (£, . %) x* (46)

2 star €Ce F 181

obtains for allowed and first parity-forbidden electron captures. Note that
equation (46), like equation (36), is independent of nuclear matrix elements,

nuclear radii, G, Cv, and CA.

Equations (44) and (45) also show that £, .. Plays the same role in

electron capture as f(-Z, Wo) plays in positron emission. Hence the empir-
ical correlation that exists between (f(-Z, wo) T%)lab and nuclear structure

also provides an empiricsl correlation between (fe c 11) and nuclear struc-
. 2

ture, and equation (46), like equation (36), can be used to estimate a stellar
capture lifetime even if the terrestrial decay has not been thoroughly investi-
gated. One simply makes an educated guess for (f'r)lab and inserts the
guessed value in equation (46).

(ii) Approximate Expressions and Physical Interpretation

It is useful to derive some approximate relations for K and fe o in
order to understand the physical interpretation of equation (46). If one
assumes that W_+ 1 >> <E> , vhere {W> is some average electron kinetic

energy in a star, then one can easily show that
K 2 o > W +1)° , (47)

where n, is the electron concentration and <F) is the Fermi function
evaluated at W =1+ <E> . Equation (47) is valid for both degenerate and

nondegenerate matter. For nondegenerate electrons, <E» ~ kT and, for




- 29 -

degenerate electrons, <E> ~ Ep, where EF is the electron Fermi energy.

The quantity fe c also has g simple approximate form:

£ .. = ox® (W, +1)° lufls(o)l2 (48a)
= 2x (wo + 1)2 (az)3 . (48b)
Thus ¢
) 2
(T% star ~ e I"ls(o)l (h9)
(T%)lab Te <F>
or:
(T%)star ~ 10 “e ZS (50)
(%) p <
2 lab

where p 1is the density in gm/cm§ and He is the mean molecular weight per
electron.

Equation (49) shows that the ratio of the stellar to the laboratory
lifetime is roughly equal to the ratio of the electron density at the nucleus
for the laboratory and stellar situations, i.e., to the relative probability
of finding an electron at the nucleus where it can be captured.

Equation (50) can be used to calculate quickly the order of magnitude

of a stellar capture lifetime when the terrestrial capture lifetime is known.

b) Unique Captures

(1) General Results

For all unique decays, the rate at which two atomic ns-electrons are
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captured is (Konopinski 1963b):

26 g €, <o+ TNy (g )t ]2 (51)

2
Ag = v (0] [ ot - 1)t

where AI - 1 1is the degree of forbiddenness. Hence,

-1
(Té)star - (fe.c.ﬁi T )1a.b (Kgf;{) o (528)
where
fe.c'ﬁiII)l) = 2“2 Zn qnseAI !vns(o)la i (52b)

Equation (52a) has the same structure as equation (38) and hence equation (52a)
can also be used to estimate the stellar lifetime of isotopes whose laboratory
decay has not been thoroughly investigated.

One can also prove that equations (49) and (50) are approximately satis-
fied for all unique transitions if Wo + 1 > <E> . From equations (30) and

(32), we find that

K0 = g+ aPeT sk (53)
and therefore:

(A1) . 2 onI

Kagy 2% @ mg <O . (k)

In equation (53), < |p + q|2(A1'1)> is the average over all directions and

2(Az-1)

energies of (p + q) . Equations (52) and (54), when combined, yield

(1) 2
Y otar . 2 v, (0]

() S a6

as asserted.




c) General Parity-Forbidden Captures

Since the bound capture rate is dominated by K-capture,.only a singie
combination of nuclear matrix elements, M%(AI), enters in an important way
the terrestrial capture formula for general parity-forbidden transitions.
Unfortunately, the stellar capture rate depends on all MJ(AI) for which j
and J satisfy equation (15). Thus for general perity-forbidden transitions
one cannot derive an expression for the stellar capture rate that is independ-
ent of unknown nuclear quantities. Instead, one must use directly equations
(22) and (27) with rough guesses for the unknown nuclear matrix elements and
other nuclear quantities; this procedure is very inaccurate with our present

knowledge of nuclear structure.

VI. INDUCED ELECTRON CAPTURE

In this section, we discuss the rate of continuum electron capture for
an isotope that is stable on earth. Since the terrestrial reactions (1) and

(3) do not occur, the relevant terrestrial decay is described by reaction (4),

(Z-1,A) + (Z,A) +e +7V .

The threshold momentum for stellar electron capture by the isotope (Z,A)

is obviously not zero if reaction (4) occurs on earth.

a) Allowed and Unique Decays

The stellar capture lifetimes can again be computed from equation (36) for
from
allowed captures and equations (38) and (39) for all unique decays. The only
change that is necessary in the formulae referring to laboratory decays is

that F(-Z,W) must be replaced by F(+Z,W) in the expressions for f(Z,Wo)
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and f£n+l) (Z,WO). For allowed captures, the above substitution merely
replaces f(-Z,Wo) by the equally well-investigated function f(+Z,W°).

The stellasr phase-space functions K and K£n+l)
lated for P_ different from zero. Fowler and Hoyle (1963) have derived

mist now be calcu-

convenient analytic expressions for K, with nonzero Po,.that are valid for
the conditions thought to obtain in the interiors of stars during the forma-
tion of the iron-peak isotopes. Their results can readily be extended to the

more general functions, K£n+l)

, although the general results are very com-
plicated.
Some analytic epproximations for first-forbidden unique decays are

given in Appendix B.

b) Parity-Forbidden Decays

The combinations of nuclear matrix elements that occur in theoretical
expressions for the stellar capture rates are different from the combinations
that occur in the expressions for terrestrial electron-emission rates. This
is because the stellar capture probability is determined by the positron
shape-factor and the terrestrial decay probability is determined by the
electron shape-factor; the parity-forbidden shape-factors are well-known
(Preston 1962; Konopinski 1963 a,b) to be linear combinations of reduced
matrix elements with some coefficients that change sign when an electron is
replaced by a positron. For example, the term + 0Z C_ ¢ f‘)/ 2 which occurs
s§l)

in the first parity-forbidden shape-factor, of equation (23), for elec-

tron capture and positron emission, becomes - QZ Cv <ﬁ.§>/2 for electron

(1)
1

emission; all other terms in S are unchanged.

It is therefore not possible to calculate induced stellar parity-forbidden
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capture rates from the results of simple experiments on the related exoergic
terrestrial decays. In a few cases, all the nuclear matrix elements have
been determined, at least approximately, by a series of experiments and one
can therefore use equations (22)-(25) and (27) to calculate directly the
stellar capture lifetimes. In most cases, however, the best one can do is
to make some crude guess for the relevant matrix elements and this will in

general lead to large uncertainties in the computed lifetime.

VII. APPLICATIONS

In this section, we illustrate the results of the previous sections by

calculating some stellar capture rates.

a) e +p+n+v

(1) Stellar Rates

The electron-capture lifetime of a stellar proton is:

(1%) = (1175 + 30) sec Kt . (55)

star

To obtain equation (55), we have used, in equation (36), the value given by

Durand et al. (1963) of (f T,) for the beta decay of the neutron.
2 lab

For nondegenerate electrons,

(e 0]
Kyp S € f ap F(-[W_] + w)? ¥ (s6)
lw_|
= 287 &™X [¥® 4 6x + 12] ,




where
B = mece/k’l’ (57a)
and
vl
X = (570)
KT
= 2,54 B .

Note that the proton lifetime depends exponentially on the threshold energy
divided by kT.

It is interesting to know the proton lifetimé under the conditions thought
to obtain in white dwarfs or in the early stages of an expanding universe. In
both these situations, the electrons are relativistically degenergte and the

appropriate function K is:

5 2 3
(Wo - 1w 1)” v ] W= (W - W ])
_ F 0 0 4 o) F o)
K, = s o (W - W D7+ 3 »  (s8)
where the total Fermi energy is defined by
1
W = (1+ (31:2 ne)2/3)2 (59a)

/o V3 3
511 [1.02 X 10 (;—) + 1] kev, (59p)
e

In equation (59b), p 1is in gm/cms.
We have neglected Coulomb corrections in equations (56) and (58); this
neglect gives rise to a maximum error of 6 per cent, which would occur for

Fermi energies only slightly greater than lwol .
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(ii) The Saxon Experiment

Saxon (1949) tried to observe reaction (a) with 1 Mev electrons from
a van de Graaff accelerator, but was only able to set an upper limit of
2.5 X lO-35 cm2 on the effective cross section. We can easily see that the
expected theoretical cross section for reaction (a) is much less than the

observed upper limit. Equations (7) and (3la) can be used to show that

o = (fg )3 <W - l:ol )2 (4n 2) F(Z,W) . (60)

e +H nc v(f Ty)
% lab

where v 1is the velocity of the incoming electrons and (f T,) is the
2 lab

neutron ft-value. The theoretical cross section for 1 Mev electrons is,

according to equation (60), only 3 X 10-)45 e,

b) KPO Decay

40

In order to understand the formation processes of A]‘LO and Cs , it

is necessary to have at least a semi-quantitative understanding of the beta-

decay lifetime and branching ratios of KhO as a function of temperature

and density. Bashkin (1962) has suggested that the decay of the 29 kev

excited state of Kl‘LO nmay dominate its stellar beta decay. The astro-

physically important levels for AFO, Kuo, and Call'O are shown in Figure 1.

The total KHO decay rate can be written as a sum of two terms,

total 40 ., 40 40 40
cter = Mstar (K" > Ca ") + Atar (K +~a7") (61a)
where )
-3.5/T
) . . i
A (K0sca'®) = A Tadhee  OA (5 w0N),
star 8 .

(61p)
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and

A (Kho N AAO) -

star

-3.5/T
. 2% +e 8<x+(3'+o*)+7\e

(3~ » 2*)) .
5 .

«C

(61c)

In equations (61), nuclear energy levels are identified by thelr spins and

parities and the temperature, TB’ is measured in units of lO+8 OK.

The stellar decay rate of the 1.321 Mev B~ transition of KhO to Cauo

will probably not be significantly different from its terrestrial value; this
conclusion is based upon previous studies of the stellar decay rates of

B -emitters (Bahcall 1961, 1962a). The excited-state 3~ + O transition
will probaﬁly not be appreciably faster than the ground state to ground-state

decay. Thus we conclude that

ho | Caho)

(K0 > ca*0) = 2 (X ) (62)

star earth

Tt is unlikely that the third-forbidden 3~ to 0% K0 to a*® transition

will proceed as rapidly as the first-forbidden 3  to 2° transition, since
the two extra orders of forbiddenness would normally be far more important
than the additional energy available for the more forbidden transition. Hence
we expect that

-3.5/T8

(K40 & A0y - Ao -2 e Ao (B2 L (e3)

star ¢

The transition probability, A, | (4~ > 2%), can be calculated for any

specified stellar temperature and density with the formulae given in Appendix
B. The excited-state transition probability, Ke o (27 » 2+), cannot be
accurately predicted since no measurement of the excited-state decay rate

has been made. A rough estimate of this decay rate can be made, however, by
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using equation (47) and assuming that (f

T;) . 1is approximately
2 lab
+7.5 + 1.0

€.Co

10 sec. The beta-decay branch, and lifetime, that dominate the
Yy . .
stellar decay of K © will vary with temperature and density approximately

according to equations (62) and (63).

c) e-Process Capture Rates

Fowler and Hoyle (1963) have shown that the beta-decay rates of six

54,55,56 and N196257,58

isotopes, Fe s determine, on their picture of the
equilibrium process, the observed relative abundances of the elements in

the iron peak. Since several of the ground-state to ground-state electron
captures for these isotopes are forbidden, it is important to know if any

of the forbidden transitions occur appreciably more rapidly than the allowed
exclted-state transitions that can also occur.

We have examined the most likely decay schemes of each of the above
listed six isotopes in an attempt to determine if forbidden captures can
greatly reduce the total decay rate predicted (Fowler and Hoyle 1963) by
considering only allowed decays. In this investigation, we have adopted
the standard e-process conditions of Fowler and Hoyle. The most important
condition, for our examination, is that Fowler and Hoyle use an effective
e-process temperature of 3.8 X lO+9 °K, This temperature corresponds to a
Boltzmen population factor for excited nuclear states of approximately
e E, where E 1is the excitation energy in Mev. Thus nuclear states with
excitation energies as high as 1.5 Mev have an average population greater
than or of the order of 1 per cent. Beta-decay experiments show that as a

rough rule each successive degree of forbiddenness increases the appropriate

ft-value by a factor of the order of 100 (Feenberg 1955; Konopinski 1963b).
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Using the above facts, we have found that none of the six isotopes of
interest are likely to have their beta-decay rates affected significantly

by forbidden decays.
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APPENDIX A.

The notation and definitions in this appendix are taken from Konopinski
(1963 a,b).
The vector spherical harmonics, Egm » are defined in terms of the

spherical harmonics, YLm s by the relation:

L

- A
T (2) = Z oyl <Blm-u) 2u)a(m)> ¥, & (A1)
A A A — —% A A N
where e = e, e =t 2 (ex + 1 ey) when ,y,z ¢ unit vectors in the

directions of the Cartesian axes.,

The nuclear beta-moments are introduced with the help of the Wigner-
Eckart theorem. Let (V.A.) stand for the vector-addition coefficient
<If(Mf) J(m)|Ii(Mi)>’ vhere I., I, M, M, are the initial and final nuclear

spin and spin projection, respectively. Then:

Tp (187 Y 111 (> = (vl O , (82)

e M} 7 (17 ¥ 75 11, (0)> = (Ven) Y (43)

e M g To IV | )> = (Vo) g 1D (Al)
and

Y L .l t .

T i gerd | @)> = (vea) <oerhy | (45)

Here complex-conjugate is denoted by a star and hermitian-conjugate by a
dagger. The initial and final nuclear states are represented by IIi (Mi)>
and IIf (Mf)>; all nuclear variables other than spin quantum numbers are

suppressed for simplicity in writing. With the conventions adopted in equations

(A2)-(A5), all nuclear beta-momenté, <YJ>, <75YJ>, {o -'Ig>, and <{a T§>,
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can be chosen to be simultaneously real {Konopinski 1963§).
The general parity-forbidden combination of nuclear matrix elements,

MJ(J), is given by the following equation:

c, [ CE gg‘l> + (0z/23+1) (3/27+ 1)’lt <YJ> ]

MJ(J)

+

(az/23 +1) (J+l/2J+l)% c, <g gg > . (4s)

The auxiliary quantities s and 7, 8are defined by the following

relations:

- i :
oJ(J,E) = [(Qi: 122‘(723:)1)] &3(-1/2) §(+1/2)13(0)> (A7)

and

v, = (-} (28)

The relativistic expression for the Fermi function is:
2(7,-1) o+ Plry, +1in) 2

r(2y_+1in) ’ (89)

F(z,w) = 2(1+7_) (2pR)

where R 1is the nuclear radius, T'(w) is the Gamma-function of w, and
n = 0Z W/p. When (az)2 <<'1 or W> 1, then:

F(z,W) 2 (2r /1 - e 2™) . (A10)

Equation (A9) differs by a factor of (1 + 70)/2 from the expression given

in Bahcall (1962a).
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APPENDIX B.

In this appendix, we give approximate analytic expressions for K§_2) 9

the generalized phase-space function that describes first-forbidden unique

captures. We assume throughout this appendix that (az)2 < 1,

a) Nondegenerate Case

From equation (30), we see that for exoergic decays:

o0}
2) o~ v i 22 -
K§) = e f dp pq F(Z,W)[p2+q2]ew/kT . (B1)
(¢]

Following Fowler and Hoyle (1963), we set

F(Z,W) = 211 <25n > (B2)

where 1 = aZ W/p. The quantity <{ F/2rq > is a slowly varying function
of temperature at high temperatures and hence can be estimated fairly ac-
curately by evaluating F and n at some average energy, such as (3 kT/2).

Using (B2) in (Bl), we find:

on oz etV P ¢ -2_:_{ > 87t l:vLL +2v% (v+21)2 7t

@

2v(v+ 1) (v2 +7v+ L) 5-2 + 12(v+1) (2v2+6v+ 1) g3

o+

N

+

24(7v2+ 16v+6) B + 720 (v+1) 8™ + 14ko 5'6] , (B3)

where
mc2/ kT s (B4)

Wo + mc2

R (35)

]
f
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and

- 1 5
e’ = =) x,(8) (B6)
2 o) 2
n nB
e
Here Ké(B) is a Bessel function of the second kind discussed on pages 79
and 202 of Watson's (lghh) treatise and B, is the electron concentration.

When (mce/kT) >> 1, i.., T< 10+° °K, then

(2) 2 \/2 4
2) « 2 H F kT
Ky -ﬁaZne<ka <2m‘>< 2>v ) (B7)
me
or, very approximately,
(2) F 7\ -3 4
) 0.1< 5% ; > ™ Tg= P V . (B8)

Here T8 is the temperature in units of 10+8

units of 107 gm/cms.

%k and Pg is the density in

The general result for exoergic decays (Po £ 0) is very complicated and

we merely present two limiting expressions. If |wol >> kT, then

n

K:(Lz) un oz 870 ¢ -2—,-?-7]- Set - I, |/xT (WOPO)2 (B9)

and if Iwol << kT, then:

S - Iwol/kT

K:(Le) = (2880 waZ) B <'2nlﬁ (310)

b) Degenerate Case

If Po = 0 and the electrons are completely degenerate, then:
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7

2
(2) _ bnoaz _7 F v+ 1), 7 (7v° + 16v + 6)
X, ——ET<2I”]> 1+ +

2EF 10 EF2

+ o N
Ep 6 Ep
. 7v2(v + 1) N 'Ivl‘L ]
5 6 ’
2 Ep 2 Ep

where the Fermi-kinetic-energy is given by:

2/3 1
= 511 . / :
EF = 1.02 X 10 Y + 1 - 11 kev,
e

and p is in gn/cms.

If POZPF, then:
2
Kl = 0 .

If P, < P, dee., (Wp - [W_|/W5)<< 1, then:

ng) = om0z i (WOPO)2 (W - W )%/ .

7(v + 1) (2v° + 6v + 1) , Iv(v s 1) (v0 + 7v + b)

(B1la)

(B11p)

(Br2)

(B13)
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Fig. 1.

FIGURE CAPTION

Astrophysically Important ILevels of AMO
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